
ESc 101: Fundamentals of Computing

Lecture 24

Feb 25, 2010

Lecture 24 () ESc 101 Feb 25, 2010 1 / 8



Outline

1 More on Arrays

2 More on Strings

Lecture 24 () ESc 101 Feb 25, 2010 2 / 8



Why is Size of Second Dimension Required in
Parameter Declaration

Consider function read_matrix():

read_vector(int vector[])

{

for (int i = 0; i < SIZE; i++)

scanf("%d", &vector[i]);

}

read_matrix(char *statement, int A[][SIZE])

{

printf(statement);

for (int i = 0; i < SIZE; i++)

read_vector(A[i]);

}

Lecture 24 () ESc 101 Feb 25, 2010 3 / 8



Why is Size of Second Dimension Required in
Parameter Declaration

In read_matrix(), read_vector(A[i]) is called several times.

We can replace this by read_vector(*(A+i)) as discussed earlier.

*(A+1) is the same as A[1] which points to A[1][0].

That means *(A+1) shifts the pointer by 4*SIZE bytes!

For this reason, the second dimension must be provided in the
parameter declaration.

Lecture 24 () ESc 101 Feb 25, 2010 4 / 8



Why is Size of Second Dimension Required in
Parameter Declaration

In read_matrix(), read_vector(A[i]) is called several times.

We can replace this by read_vector(*(A+i)) as discussed earlier.

*(A+1) is the same as A[1] which points to A[1][0].

That means *(A+1) shifts the pointer by 4*SIZE bytes!

For this reason, the second dimension must be provided in the
parameter declaration.

Lecture 24 () ESc 101 Feb 25, 2010 4 / 8



Why is Size of Second Dimension Required in
Parameter Declaration

In read_matrix(), read_vector(A[i]) is called several times.

We can replace this by read_vector(*(A+i)) as discussed earlier.

*(A+1) is the same as A[1] which points to A[1][0].

That means *(A+1) shifts the pointer by 4*SIZE bytes!

For this reason, the second dimension must be provided in the
parameter declaration.

Lecture 24 () ESc 101 Feb 25, 2010 4 / 8



Why is Size of Second Dimension Required in
Parameter Declaration

In read_matrix(), read_vector(A[i]) is called several times.

We can replace this by read_vector(*(A+i)) as discussed earlier.

*(A+1) is the same as A[1] which points to A[1][0].

That means *(A+1) shifts the pointer by 4*SIZE bytes!

For this reason, the second dimension must be provided in the
parameter declaration.

Lecture 24 () ESc 101 Feb 25, 2010 4 / 8



Why is Size of Second Dimension Required in
Parameter Declaration

In read_matrix(), read_vector(A[i]) is called several times.

We can replace this by read_vector(*(A+i)) as discussed earlier.

*(A+1) is the same as A[1] which points to A[1][0].

That means *(A+1) shifts the pointer by 4*SIZE bytes!

For this reason, the second dimension must be provided in the
parameter declaration.

Lecture 24 () ESc 101 Feb 25, 2010 4 / 8



Outline

1 More on Arrays

2 More on Strings

Lecture 24 () ESc 101 Feb 25, 2010 5 / 8



String Operations

Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

It provides the following operations:
I strcmp(s, t): compares two strings s and t.
I strcat(s, t): concatenates string t to s.
I strlen(s): computes the length of string s.
I strcpy(s, t): copies string t into s.

Lecture 24 () ESc 101 Feb 25, 2010 6 / 8



String Operations

Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

It provides the following operations:
I strcmp(s, t): compares two strings s and t.
I strcat(s, t): concatenates string t to s.
I strlen(s): computes the length of string s.
I strcpy(s, t): copies string t into s.

Lecture 24 () ESc 101 Feb 25, 2010 6 / 8



String Operations

Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

It provides the following operations:
I strcmp(s, t): compares two strings s and t.
I strcat(s, t): concatenates string t to s.
I strlen(s): computes the length of string s.
I strcpy(s, t): copies string t into s.

Lecture 24 () ESc 101 Feb 25, 2010 6 / 8



String Operations

Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

It provides the following operations:
I strcmp(s, t): compares two strings s and t.
I strcat(s, t): concatenates string t to s.
I strlen(s): computes the length of string s.
I strcpy(s, t): copies string t into s.

Lecture 24 () ESc 101 Feb 25, 2010 6 / 8



String Operations

Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

It provides the following operations:
I strcmp(s, t): compares two strings s and t.
I strcat(s, t): concatenates string t to s.
I strlen(s): computes the length of string s.
I strcpy(s, t): copies string t into s.

Lecture 24 () ESc 101 Feb 25, 2010 6 / 8



String Operations

Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

It provides the following operations:
I strcmp(s, t): compares two strings s and t.
I strcat(s, t): concatenates string t to s.
I strlen(s): computes the length of string s.
I strcpy(s, t): copies string t into s.

Lecture 24 () ESc 101 Feb 25, 2010 6 / 8



String Operations

Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

It provides the following operations:
I strcmp(s, t): compares two strings s and t.
I strcat(s, t): concatenates string t to s.
I strlen(s): computes the length of string s.
I strcpy(s, t): copies string t into s.

Lecture 24 () ESc 101 Feb 25, 2010 6 / 8



Implementing strcmp

/* Compares two input strings */

int my_strcmp(char s[], char t[])

{

for (int i = 0; (s[i] != ’\0’) && (t[i] != ’\0’); i++)

if (s[i] != t[i]) /* strings not equal */

break;

return (int) (s[i] - t[i]);

}

Lecture 24 () ESc 101 Feb 25, 2010 7 / 8



Implementing strcmp: Alternative

/* Compares two input strings */

int my_strcmp(char *s, char *t)

{

for (; (*s != ’\0’) && (*t != ’\0’); s++, t++)

if (*s != *t) /* strings not equal */

break;

return (int) (*s - *t);

}

Lecture 24 () ESc 101 Feb 25, 2010 8 / 8


	More on Arrays
	More on Strings

