ESc 101: FUNDAMENTALS OF COMPUTING

Lecture 24

Feb 25, 2010

LECTURE 24 () ESc 101



OUTLINE

@ MORE ON ARRAYS

LECTURE 24 () ESc 101



WHY 1S SIZE OF SECOND DIMENSION REQUIRED IN

PARAMETER DECLARATION

Consider function read_matrix():

read_vector(int vector[])
{
for (int i = 0; i < SIZE; i++)
scanf ("%d", &vector[i]);
}

read_matrix(char *statement, int A[][SIZE])
{
printf (statement) ;
for (int i = 0; i < SIZE; i++)
read_vector(A[il);

LECTURE 24 () ESc 101 FEB 25, 2010

3/8



WHY 1S SIZE OF SECOND DIMENSION REQUIRED IN
PARAMETER DECLARATION

@ In read_matrix(), read_vector(A[i]) is called several times.

LECTURE 24 () ESc 101 FEB 25, 2010 4/8



WHY 1S SIZE OF SECOND DIMENSION REQUIRED IN
PARAMETER DECLARATION

@ In read_matrix(), read_vector(A[i]) is called several times.

@ We can replace this by read_vector (* (A+i)) as discussed earlier.

LECTURE 24 () ESc 101 FEB 25, 2010 4/8



WHY 1S SIZE OF SECOND DIMENSION REQUIRED IN
PARAMETER DECLARATION

@ In read_matrix (), read_vector(A[i]) is called several times.
@ We can replace this by read_vector (* (A+i)) as discussed earlier.
@ *(A+1) is the same as A[1] which points to A[1] [0].

LECTURE 24 () ESc 101 FEB 25, 2010 4/8



WHY 1S SIZE OF SECOND DIMENSION REQUIRED IN
PARAMETER DECLARATION

@ In read_matrix (), read_vector(A[i]) is called several times.

@ We can replace this by read_vector (* (A+i)) as discussed earlier.
@ *(A+1) is the same as A[1] which points to A[1] [0].

@ That means * (A+1) shifts the pointer by 4*SIZE bytes!

LECTURE 24 () ESc 101 FEB 25, 2010 4/8



WHY 1S SIZE OF SECOND DIMENSION REQUIRED IN
PARAMETER DECLARATION

In read_matrix(), read_vector(A[i]) is called several times.

We can replace this by read_vector (* (A+1)) as discussed earlier.
*(A+1) is the same as A[1] which points to A[1] [0].
That means *(A+1) shifts the pointer by 4*SIZE bytes!

For this reason, the second dimension must be provided in the
parameter declaration.

LECTURE 24 () ESc 101 FEB 25, 2010 4/8



OUTLINE

© MORE ON STRINGS

LECTURE 24 () ESc 101



STRING OPERATIONS

@ Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

LECTURE 24 () ESc 101 FEB 25, 2010 6/8



STRING OPERATIONS

@ Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

@ However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

LECTURE 24 () ESc 101 FEB 25, 2010 6/8



STRING OPERATIONS

@ Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

@ However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.
@ It provides the following operations:

LECTURE 24 () ESc 101 FEB 25, 2010 6/8



STRING OPERATIONS

@ Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

@ However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

@ It provides the following operations:

» strcmp(s, t): compares two strings s and t.

LECTURE 24 () ESc 101 FEB 25, 2010 6/8



STRING OPERATIONS

@ Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

@ However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

@ It provides the following operations:

» strcmp(s, t): compares two strings s and t.
» strcat(s, t): concatenates string t to s.

LECTURE 24 () ESc 101 FEB 25, 2010 6/8



STRING OPERATIONS

@ Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

@ However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.

@ It provides the following operations:

» strcmp(s, t): compares two strings s and t.
» strcat(s, t): concatenates string t to s.
» strlen(s): computes the length of string s.

LECTURE 24 () ESc 101 FEB 25, 2010 6/8



STRING OPERATIONS

@ Since strings are just arrays and are not treated in any special way,
operations on strings are not provided in C.

@ However, a library of functions for operating on strings exists and can
be accessed by using the header declaration #include <string.h>.
@ It provides the following operations:

>

>
>
>

strcmp(s, t): compares two strings s and t.
strcat(s, t): concatenates string t to s.
strlen(s): computes the length of string s.
strcpy(s, t): copies string t into s.

LECTURE 24 () ESc 101 FEB 25, 2010 6/8



IMPLEMENTING strcmp

/* Compares two input strings */
int my_strcmp(char s[], char t[])

{
for (int i = 0; (s[i] !'= °\0’) && (t[i] '= °\0’); i++)
if (s[i] != t[i]) /* strings not equal */
break;
return (int) (s[i] - t[il);
}

LECTURE 24 () ESc 101 FEB 25, 2010 7/8



IMPLEMENTD«}stramx ALTERNATIVE

/* Compares two input strings */
int my_strcmp(char *s, char *t)

{
for (; (ks !'= °\0’) && (xt !'= ’\0’); s++, t++)
if (*s != xt) /* strings not equal */
break;
return (int) (*s - *t);
}

LECTURE 24 () ESc 101 FEB 25, 2010

8/8



	More on Arrays
	More on Strings

